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Finding the windows of regular motion within the chaos of ordinary differential equations
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A method is presented to find the windows of regular motion, which are normally buried in the chaos,
of ordinary differential equations. It relies on using the Hénon map to approximate the Poincaré map of
the differential equations. Here, it is demonstrated for the physical system of a vertically driven, damped

pendulum.
PACS number(s): 05.45.+b, 03.20.+1, 02.90.+p

INTRODUCTION

We use the Hénon map to approximate the Poincaré
return map of a dynamical system of three ordinary
differential equations (ODE’s). The Hénon map [1], a
two-dimensional map with two parameters a and b, is

xn+1=1_ax3+yn ’ yn+l=bxn . (1)

It is general enough to approximate any two-dimensional
map that has a fixed point and a fixed contraction per
iteration, through the quadratic terms in an expansion
about the fixed point. Gallas [2] has recently found the
positions of the windows of regular motion of the Hénon
map as a function of its two parameters. This informa-
tion could be used to find the corresponding windows of
the dynamical system if one knew how to determine the
parameters of the approximating Hénon map from the
parameters of the dynamical system described by the
ODE’s. One of these parameters can usually be deter-
mined by equating the rates of contraction of a comoving
volume in the two systems. Then we are left with finding
the value of the other parameter, which produces the
desired regular behavior. The value of this parameter
can be determined by studying the behavior of the Hénon
map near the desired window and then seeking this
behavior in the dynamical system by a search strategy of
bracketing and successive halving.

THE VERTICALLY DRIVEN, DAMPED PENDULUM

As an example of this method, we consider the case of
the vertically driven, dampled pendulum. We choose this
system because its response is richer than the simple pen-
dulum. Taking the force frequency ‘‘at resonance,” the
differential equation is

2
%t—f = —sin9-3% + A cos(2t)sinf , (2)
where A is the forcing amplitude and B is the damping
factor. It is the extra factor of sin6 in the forcing term
that makes this different from the simple pendulum [3].
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For instance, 6(¢)=0 is a solution to this equation for any
forcing amplitude. For this vertically forced pendulum,
the resonance frequency (for small amplitude) is twice the
natural frequency of the unforced pendulum, hence the
factor of 2 in the above equation. If we let w=d 6/dt and
¢ be the phase of the forcing term, then we can rewrite
this as three autonomous first-order differential equations

b=w,
®= —sin@—PBw+ A4 cos¢ sinf , (3)
é=2 .

In this three-dimensional space the rate of relative con-
traction of a comoving volume is 8. We take the Poin-
caré section at fixed ¢ and the Poincaré map to be the
second return map, giving the values of w and 6 at
¢=¢y+4m as a function of those values at ¢=¢,. Then
the contraction per iteration of an area, induced by the
Poincaré map, is e ~ 2.

BEHAVIOR OF THE VERTICALLY DRIVEN,
DAMPED PENDULUM [3]

We have examined the behavior of the vertically
driven, damped pendulum by fourth-order Runge-Kutta
numerical integration with 60 steps per 27 forcing cycle.
One way to display this behavior of the pendulum on the
computer is to make a plot of the motion in the 6-w
plane, ignoring ¢. We use a distorted 8- plane to keep 0
continuous even for over-the-top (i.e., rotational) motion.
We do this by using quasipolar coordinates where 6 is
plotted as an angle, while w is plotted radially starting at
a zero circle, with the positive direction being toward the
center of the circle; see Fig. 1. Of course, one must
watch the scale for o so that it never becomes so large as
to make the radius vector negative. This plot has the vir-
tue that for small oscillations it looks similar to a Carte-
sian plot, while for over-the-top motion it produces a
continuous path.

The behavior of the vertically driven pendulum is very
rich. When we fix the damping coefficient, at =0.5 for
example, and increase the driving amplitude 4 from
zero, we find the following behaviors, which are shown in
Fig. 2:

(a) fixed point at rest,

(b) symmetric one-cycle
motion),

(the standard resonance
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FIG. 1. Distorted 6-w plane used to plot the projection (¢ is
ignored) of the phase-space motion of the vertically driven,
damped pendulum. Here 0 is plotted as an angle, while
w=d@0/dt is plotted radially from a zero circle, inward being
positive.

(c) spontaneous symmetry breaking to an asymmetric
one-cycle,

(d) bifurcation to an asymmetric two-cycle,

(e) repeated bifurcations of the period-doubling route
to chaos,

(f) asymmetric chaotic motion,

(g) crisis to symmetric chaotic motion, and

(h) another crisis to over-the-top chaotic motion.

It is in the region of asymmetric chaotic motion, behavior
(f), where we wish to find the windows of regular
motion. There must be an unstable asymmetric one-cycle
buried in the asymmetric strange attractor. It is the con-
tinuation of the stable asymmetric one-cycle found at
lower values of A4 in region (c) above. This fixed point in
the Poincaré section, not the one at 6=0=w, is the
center of the region which the Hénon map is approximat-
ing.

COMPARISON WITH THE HENON MAP

Note that the Hénon map collapses into the one-
dimensional logistic map if b=0. The variable y is lost,
while x takes on the role of the single variable of the
logistic map. Metropolis, Stein, and Stein [4] have stud-
ied and characterized by a unique code each window of
regular motion of the logistic map.

The contraction of a comoving area in the Hénon map
is |b|. Thus, if the Hénon map is going to approximate
the Poincaré map of the pendulum’s dynamics we must
have |b|=e 2", Note that this implies that larger
damping brings the pendulum’s dynamics closer to the
logistic map, with its well known results. We are still free
to choose the value of ¢, where we take the Poincaré sec-
tion. With a judicious choice of ¢y, the mapping of the
Hénon map onto the Poincaré map might allow one of
the two variables 6 or w, and not a linear combination of
the two, to essentially correspond to x in the Hénon map.
We found that such a choice allowed 6 to be the desired
quantity. (This occurs at the ¢, where the strange attrac-
tor in the 6-» plane lies mainly in the 6 direction.) By
comparing the position of the extra arm in the plot of
6,4+, vs 6, to the corresponding plots of x, ,; vs x,, we
found that negative b is necessary for the Hénon map to
approximate the Poincaré map; see Figs. 3 and 4. Thus
we have

b=—e 2 4)

This is one of two needed relations to determine which
Hénon map approximates a particular vertically driven,
damped pendulum. Unfortunately, we know of no gen-
eral principle that can tell us the other relationship
a=a(A,B), so we must resort to a searching algorithm.
Any window of the Hénon map that can be directly con-
tinued to b =0 (normal window) can be identified with
the Metropolis-Stein-Stein (MSS) code of the logistic
map. Even for b <0 the code still describes the dynamics
of the periodic behavior. However, there exists windows
that do not continue to b=0; instead, they are the
“shrimp” windows discovered and named by Gallas.
They cannot be assigned a unique binary code since they
have two points at or near the peak of x, . ; vs x,,, one on
the parabola and the other on the extra arm.

In Fig. 5 we have made an enlargement of Gallas’s dia-
gram for the range of parameters that apply to the pen-
dulum, i.e., negative b. Here black is chaotic motion and
white is regular, or, at the high-a limit, unbounded. The
trajectories of nine normal windows appear. Using their
MSS code at b=0, they are the ten-cycle RLR 3LRLR,
the six-cycle RLR?3, the eight-cycle RLR>, the seven-
cycle RLR*, the five-cycle RLR?, another seven-cycle
RLR2LR, the three-cycle RL, another five-cycle RL?R,
and the four-cycle RL2. One of the shrimp windows, an
eight-cycle, may be seen at a=1.8 and b=—0.024.
Traces of other narrower windows are also evident. Two
of the windows (the three- and four-cycles) slope down to
the left, while the other seven slope down to the right.
The first two also terminate before b = —0.05, while the
other seven do not terminate in this range. (The five-
cycle RL2R does, however, hit the crisis.) The difference
between these two behaviors is related to the extra arm
on the plot of x,, .| Vs X,,.

The extra arm is the image of points to the left of the
peak while the “parabola” is the image of points to the
right of the peak. Thus the last letter of the MSS code
determines whether the peak point will be on the parab-
ola or on the extra arm. If the last letter is R then the
peak point will be on the parabola and the trajectory of
the window will slope to higher a as b decreases. Ifitis L
then the peak point will be on the extra arm and the slope
will be in the other direction. (If the strange attractor
were “fatter” it is possible that we would see more layers
and would then have to specify the last two letters of the
code to specify the layer of the peak point.) The peak
point being on the extra arm also seems to cause termina-
tion of the window. In this region of the parameter space
there are two possible asymptotic behaviors, chaotic or
periodic, depending on the initial conditions. These
three- and four-cycle windows terminate by the basin of
attraction of the periodic behavior shrinking until it van-
ishes.

Thus, by examining Gallas’s diagrams, we learn that
most of the windows at b= —0.05 continue back to
b =0, where they are the standard windows of the logistic
map. The two notable exceptions are the three-cycle win-
dow of the logistic map, which “closes” before it reaches
the interesting b values, and a new set of eight-cycle win-
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FIG. 2. Various attractors of the vertically forced pendulum. The driving amplitude A is being increased while the damping is
fixed: (a) the motion dies out (in spite of being driven), (b) a symmetric cycle, (c) an asymmetric cycle, (d) an asymmetric two-cycle, (e)
an asymmetric four-cycle, (f) asymmetric chaotic motion, (g) symmetric chaos, and (h) over-the-top chaotic motion.
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FIG. 3. Plot of 6, 1, vs 6, from the Poincaré map of the vert-
ically driven, damped pendulum in the asymmetric chaos re-
gime. This is from the ¢, where the strange attractor lies main-

ly in the @ direction, not the w direction.
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FIG. 4. Plots of x,, ,; vs x,, from the Hénon map where it has
chaotic motion, for two signs of b: (a) b >0 and (b) b <0. Note
the position of the ‘“extra arm” relative to the larger ‘“parab-
ola.” The extra arm shrinks to nothing as b—0.

dows that come from an eight-cycle “‘shrimp,” a region of
regular structure that Gallas found.

THE SEARCH PROCEDURE

Let us assume that we want to find the value of A4
where a particular n-cycle window occurs for a given
value of the damping factor B. We know to look in the
Hénon map at b= —e 2™, From Gallas’s work we can
find the a value of the desired window. Then we need to
relate this to the A value of the pendulum. The
correspondence between the pendulum and the Hénon
map is such that increasing a at fixed b implies increasing
A at fixed B.

This also corresponds to increasing R in the logistic
map. If the desired window is not one of the shrimp win-
dows it can be continued to b =0, where it is a window of
the logistic map and has a MSS [4] binary code. At the R
value that makes the n-cycle superstable R, n iterations
of the peak point x,=1 returns to x, =1. For R values
near R,, where R =R, +8R, the nth iteration, starting at
the same x,, will yield x,=1+8x. The sign of the

derivative 8x /8R can be determined by the MSS code for
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FIG. 5. Asymptotic motion (regular, chaaotic, or unbounded)
of the Hénon map as a function of a and . Unfortunately, the
diagram had to be cut into two to show enough detail. Black is
chaotic, the white at large a is unbounded motion. The white
lines are the windows of periodic motion; their periods are
shown. The text further identifies them by their MSS codes.
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TABLE 1. Position of certain windows of periodic motion for
the vertically driven, damped pendulum and for the correspond-
ing Hénon map. The first column gives the order and the MSS
binary code [4] of the window. The parameters 4 and f3 are for
the pendulum, while a and b are the corresponding parameters
of the Hénon map. For the pendulum, these parameters were
obtained using fourth-order Runge-Kutta numerical integration
with 60 steps per 2 forcing cycle.

Window A B a b

4 RLR 2.15512 0.598 1.34 —0.0233
6 RLRRR 1.901 38 0.48 1.55 —0.049

6 RLRRR 1.943 51 0.5 1.541 —0.0432
6 RLRRR 2.15445 0.595 1.5149 —0.023 8
7 RLRRRR 1.904 42 0.48 1.6472 —0.049

5 RLRR 1.746 23 0.4 1.742 —0.081

5 RLRR 1.864 65 0.46 1.7045 —0.0556
5 RLRR 1.906 03 0.48 1.6955 —0.049

5 RLRR 1.948 25 0.5 1.687 —0.0432
7 RLRRLR 1.907 42 0.48 1.7392 —0.049
7,3 2.15450 0.592 1.705 —0.02424
3 RL 2.2445 0.63 1.721 —0.0191
3 RL 2.3410 0.67 1.728 —0.01485
4 RLL 2.159 69 0.591 1.8855 —0.0244
8 shrimp 2.162 345 0.5936 1.806 —0.024

the window. If the number of R’s in the code is even then
the derivative is positive, if odd then negative. This
derivative may also be experimentally determined in the
chaos outside the window of regular motion. It can be
determined for either the Hénon map or the Poincaré
map of the pendulum’s dynamics. In these cases starting
at the peak of the x, ,, vs x,, plot, or the 6, . ; vs 6, plot,
is the equivalent starting point. In the case of the Poin-
caré map, one cannot “start” at the peak since one does
not know what w to use. Instead, one must watch the
6,1 vs 0, plot as one integrates the differential equa-
tions and notes a point sufficiently near the peak. Then,
after n more cycles, one can learn the sign of 86. This,
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FIG. 6. Plot of 9, ,, vs 8, for one of the windows of the vert-
ically driven pendulum found at 4=1.90603 and $=0.48.
Lines have been added to help follow this five-cycle RLRR.
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FIG. 7. Plots of the eight-cycle shrimp window: (a) 6, ,; vs
6, from the vertically driven pendulum with 4 =2.162 345 and
$=0.5936 and (b) x,+; vs x, from the Hénon map with
a=1.806 and b = —0.024. Note the similarity in the two plots.

along with the previously determined sign of the deriva-
tive, allows one to determine if this 4 value is above or
below the desired A4,. Always staying in the region of
asymmetric chaotic motion, region (f) above, one can
bracket the desired A4, by repeating this process while
varying A until the sign of 80 changes. Once one has
bracketed the desired A4,, successive halving of the A4 in-
terval allows the determination of A4, to any desired ac-
curacy. By this procedure we have been able to find most
of the windows with n <7. See Table I. Figure 6 shows
the 8, vs 0, plot of a five-cycle window.

Each of Gallas’s shrimp windows lies at a particular a
and b. Thus, to find a shrimp window in the pendulum’s
dynamics, one must be at the corresponding value of S.
Then one again studies the behavior in the Hénon map at
a values above and below the window’s a value. From
this, one is able to identify these behaviors in the Poin-
caré map, bracket the window, and finally home in on it.
Figure 7 shows the plots of x,, . vs x,, and of 6, . ; vs O,
for the eight-cycle shrimp window.

Gallas’s diagram shows where certain windows cross.
We investigated this and found a set of parameters for
the pendulum where, depending on the initial conditions,
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one ends on either the seven-cycle or the three-cycle.
(See Table I.) To obtain the three-cycle one must be de-
creasing A to the given value. For the three-cycle at oth-
er parameter values and the four-cycle RLL, one either
obtains chaos or the indicated n-cycle, depending on ini-
tial conditions. The basin of attraction for regular
behavior shrinks as one decreases the value of b, starting
from 0. These windows finally close when their basins of
attraction shrink to nothing.

SUMMARY

As our table indicates, we have been able to find many
of the windows of regular motion in the motion of the

vertically driven, damped pendulum. Just as important,
we have also learned where and why certain expected
windows, such as the three-cycle, are absent. The
discovery of these windows allows a ‘“‘control of chaos”
by choosing the parameters that keep the asymptotic
behavior within a window of regular behavior.

This method of finding the windows of regular motion
could be repeated for many dynamical systems described
by three ODE’s. However, it is not completely general.
It probably does not work for a system with an internal
symmetry. That is why we did not try it in region (g),
where the asymptotic motion is symmetric chaos. In
fact, an interesting question that remains is, “What is the
nature of the Poincaré map when this symmetry exists?”’
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